
Shinwoo Kim
Teaching Assistant

shinwookim@pitt.edu
https://sites.pitt.edu/~shk148/

Spring 2023, Term 2234

Friday 12 PM Recitation

Jan 20th, 2023

Slides adapted from

Martha Dixon and Vinicius Petrucci

Department of Computer Science

School of Computing & Information

University of Pittsburgh

Recitation 2: Bitwise Operators and I/O

Ø Bitwise operators

Ø Input and Output in C

Ø Lab 1: Data Lab

CS 0449: Introduction to Systems Software Griffin Hurt

Griffin Hurt
Undergraduate Teaching Fellow

griffhurt@pitt.edu
https://griffinhurt.com

Spring 2024, Term 2244
Friday 2 PM Recitation

Jan 26th, 2024

Slides adapted from
Shinwoo Kim, Martha Dixon, and Vinicius Petrucci

Department of Computer Science
School of Computing & Information

University of Pittsburgh

Agenda

2

Course News!
Review of Bitwise Operations
C Programming: Basic I/O

– Using scanf() and printf()
Lab 1 - Data Lab

3

Course News

Updated TA Office Hours:

Materials are on my website: https://griffinhurt.com/teaching/
Lab 1 announced

– Due: 5:59PM Thursday, February 1st, 2024.

Day Time/Location

Monday 1:00PM – 2:30PM @ 130 N Bellefield, 5th Floor or Zoom

Tuesday 11:00 AM - 2:00 PM @ 130 N Bellefield, 5th Floor or Zoom

Thursday 4:00 PM – 5:30 PM @ Zoom only

By appointment Message me to schedule a meeting (in-person/virtual)

https://griffinhurt.com/teaching/

Bitwise Operations

4

With materials from Jarrett Billingsley

5

Bitwise AND ("Logical product")

AND takes two bits and gives you one new one.
it can be written a number of ways:

– A&B A ∧B A ⋅B AB
if we use the and instruction (or & in C/Java):

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

& 0 0 1 1 1 0 1 0
= 0 0 1 1 0 0 0 0

1 1 1 1 0 0 0 0

we did several independent AND operations.

6

Bitwise OR ("Logical sum")

we might say "and/or" in English
it can be written a number of ways:

– A|B A∨B A+B
if we use the or instruction (or | in C/Java):

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

| 0 0 1 1 1 0 1 0
= 1 1 1 1 1 0 1 0

1 1 1 1 0 0 0 0

we did several independent OR operations.

7

Bitwise NOT

the ~ instruction
A Y
1 0
0 1

= 0 0 0 0 1 1 1 1
~ 1 1 1 1 0 0 0 0

we did several independent NOT operations.

8

Bit shifting

besides AND, OR, and NOT, we can move bits around, too.
1 1 0 0 1 1 1 1

1 1 0 0 1 1 1 1 0

1 1 0 0 1 1 1 1 0 0

1 1 0 0 1 1 1 1 0 0 0

1 1 0 0 1 1 1 1 0 0 0 0

if we shift these
bits left by 1…
we stick a 0 at the bottom

again!

AGAIN!

AGAIN!!!!

0011

C/Java/Python/etc. use the << operator for left shift
– B = A << 4; // B = A shifted left 4 bits

but wait, If the bottom 4 bits of the result are now 0s…
– …what happened to the top 4 bits?

0000 0000 1111 1100 1101 1100 1111

9

Left-shifting in C

0000 0000 1111 1100 1101 1100 11110000

bits that get "shifted off" the top are discarded. this
may or may not lead to problems!Bit

Bucket

10

So… what does it DO?

let's start with a value like 5 and shift left and see what happens

Binary Decimal
00000101 5
00001010 10
00010100 20
00101000 40
01010000 80

11

a << n == a × 2n

shifting left by n is the same as multiplying by 2n

– you probably learned this as "moving the decimal point"
– and moving the decimal point right is like shifting the digits
left

with bit shifting, we're moving the binary point (yes, really)

shifting is fast and easy on most CPUs
– way faster than multiplication in any case
– HLL compilers will try really hard to replace "multiplication

by a constant" with shifts and adds

12

<_< >_>

0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1
0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0

we can shift right, too

13

a >>> n == a ÷ 2n

shifting right by n is the same as dividing by 2n

Binary Decimal

00001010 10
00010100 20
00101000 40
01010000 80

00000101 5
00000010 2

that's what integer division
gives us too, right?

5 / 2 == 2
but soon we'll see that right-

shifting and division can
sometimes disagree.

14

Signed numbers messing things up again

1 0 1 0 1 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 1 0 1 1

= 172
= 86
= 43

= -84
= 86
= 43

1 0 1 0 1 1 0 0
1 1 0 1 0 1 1 0
1 1 1 0 1 0 1 1

= -84
= -42
= -21

C uses >> (depends on data type)

Unsigned Signed

well that's a little
unfortunate.

Arithmetic Right Shift is used for signed numbers: it
"smears" the sign bit into the top bits.

15

Uh oh, they're fighting

Binary
10110000 -80

n Decimal
0 -80

a÷2n

11011000 -401 -40
11101100 -202 -20
11110110 -103 -10
11111011 -54 -5
11111101 -35 -2
11111110 -26 -1
11111111 -17 0

well that's a little weird.

actually, this is correct.
but so is the way that

integer division works.
they're both right.

(we'll come back to this.)

16

Doing modulo with bitwise AND
in decimal, dividing by powers of 10 is trivial.

53884 ÷ 1000 = 53 R 88453884 ÷ 1000 = 53 R 884
in binary, we can divide by powers of 2 easily with shifting…
and we can get the modulo by powers of 2 with bitwise AND!

10010110 ÷ 1000 = 10010 R 11010010110 ÷ 1000 = 10010 R 110
10010110

>>> 3
00010010

10010110
& 00000111
00000110

so, a % 2n == a & (2n-1)

17

Bitwise != Logical

! is a boolean operator, so it changes the logic value of the
expression.

– E.g., !1 == 0 (b/c !true == false)
– In C, booleans are just ints

● false == 0
● true != 0

» Caveat: C only guarantees that true is a non-zero integer.
» Practically, many systems/libraries define true to be 1

– !42== 0
~ is a bitwise operator, it affects the values of individual bits:
E.g. (with 8 bits)

– ~0 → -1 (00000000 → 11111111)
– ~5 → -6 (00000101 → 11111010)

Quiz Time!
(Don’t worry, it’s for completion)

The access code is:_______

18

19

C Programming
Basic Input/Output using the C Standard Library

Standard C Library (libc)

20

In Lab0, you used printf() in the Hello World program
● > printf("Hello world! x is currently %d \n", x);
● > Hello world! x is currently 2

– printf() stringified the arguments and printed to the standard output
● formatted the string and filled-in the placeholders (e.g., %d)

Notice we didn’t need to implement that printf() function
ourself
– printf() is a function built-in to C’s standard I/O library

● Hence, we needed to tell our compiler to make use of the standard
library functions with #include <stdio.h>

● You will soon talk about how the libraries are linked to your code in
lecture

21

man gives us information about functions, commands,
libraries

On most Unix/Unix-like systems, you can use man to learn
more about functions/commands/etc.
The manual has the most accurate information about all the
library functions, programs, commands, etc.

> Man printf
SCANF(3) Library Functions Manual

SCANF(3)
NAME

printf, fprintf, ... , vsnprintf - formatted output conversion

...
DESCRIPTION

The functions in the printf() family produce output according to a
format as described below

...
If you are having trouble running man on Thoth, google man printf

22

Detailed look at using printf()

Returns an integer: number of
characters printed (excluding
null terminator)

Remember, in C, a
string is just an array of
characters

We place placeholders which begin
with a percent sign (%). The variables
which comes after the formatter will
replace the placeholders when printing

#include <stdio.h>
int main()
{

printf("Name: %s, Info:\n", "John");
printf("\tAge: %d \t Ht: %f\n", 20, 5.9);
printf("\tYear: %d \t Dorm: %s\n", 3, "Towers");
return 0;

}

Name: John, Info:
Age: 20 Ht: 5.9
Year: 3 Dorm: Towers

int printf(const char * format, ...);

23

Reading Input using scanf()

Returns an integer: number of
input items successfully
matched and assigned

Defines what we are
reading (character?
Integer? Float?)

Passes by reference (a pointer) to
the variable which will hold our input

Like printf(), scanf() is another C standard library
function

– Used to read character, string, numeric data from keyboard
– Again, if you want to use it in your program you have to include the

header (#include <stdio.h>)

int scanf(const char * format, ...)

24

Example code using scanf() (live demo)

#include <stdio.h>
int main()
{

char ch;
int x;
printf("Enter any character \n");
scanf("%c", &ch);
printf("Entered character is %c \n", ch);
printf("Enter any integer\n");
scanf("%d", &x);
printf("Entered integer is %d\n", x);
return 0;

}

Lab 1: Data Lab

25

Practicing with data and input

26

Part A: Practicing Data and Bitwise Manipulation

Collaboration: You are encouraged to work with one other
person.

– Select your partner’s name on Gradescope
– Part A – Problems
– See L1: Data Representation on Gradescope
– Multiple choice, fill-in-the-blank type of questions

27

Part A: Understanding sizeof()

To help you complete the questions on Gradescope…
– You can a file size.c and write code to calculate size of

each value
– Expected output:

The size of <some value> is #
The size of <some other value> is #
The size of <a third value> is #

Hint: The special 'sizeof()' macro gives us the byte size.

28

B2: Understanding ternary operators

TODO: Implement the function ternary in ternary.c
int ternary(int cond, int true_value, int false_value) {
/*...*/}
– Cannot use the ternary operator
– Output of ternary should be the same as: cond?true_value:false_value

VARIABLE = COND ? TRUE_VALUE : FALSE_VALUE

VARIABLE == ternary(COND, TRUE_VALUE, FALSE_VALUE)

The condition to be tested (returns true/false)`

The value to be returned if the condition is true
The value to be returned if the condition is false

In C, FALSE == 0; TRUE != 0 (usually TRUE == 1 but not always)

29

B3: Creating a simple calculator

Requirements

Create 1 files: calculator.c
– Inputs must be read from

keyboard (use scanf())
Support the following
operations:

– +, -, *, /, %(mod)
– & (bitwise and), ~ (bitwise not)

Your output must match the
sample output

Enter your calculation:
3 + 4
> 3 + 4 = 7
Enter your calculation:
3 c 4
Invalid calculation! "3 c 4"

User Input

HINT: Take a look at calculator.c from Lab0

