
Shinwoo Kim
Teaching Assistant

shinwookim@pitt.edu
https://sites.pitt.edu/~shk148/

Spring 2023, Term 2234

Friday 12 PM Recitation

Jan 20th, 2023

Slides adapted from

Martha Dixon and Vinicius Petrucci

Department of Computer Science

School of Computing & Information

University of Pittsburgh

Recitation 3: Pointers

Ø Course News

Ø Pointers

Ø Quiz (for completion)

Ø Lab 2: Pointer Lab: Looking at Pointers!

CS 0449: Introduction to Systems Software Griffin Hurt

Griffin Hurt
Undergraduate Teaching Fellow

griffhurt@pitt.edu
https://griffinhurt.com

Spring 2024, Term 2244
Friday 2 PM Recitation

Feb 2nd, 2024

Slides adapted from
Shinwoo Kim, Martha Dixon, and Vinicius Petrucci

Department of Computer Science
School of Computing & Information

University of Pittsburgh

2

Course News

Lab 2 is out, due February 8th 5:59PM

Pointers
Point to here, point to there, point to

that, point to this, and point to
nothing! well, they are just memory

addresses!!??

3Griffin Hurt - CS 0449

next:
value: 0

● remember writing linked lists?
class Link {

Link next;
int value;

}
Link list = new Link();
list.next = new Link();
list.next.next = new Link();

You've kinda used pointers in Java...

4

next:
value: 0

next:
value: 0

what about a reference that
doesn't refer to anything?

C has null too, but you
have to yell it: NULL!

A pointer is a variable that contains a memory address

Griffin Hurt - CS 0449

Pointers are variables, so they have a type

● The type describes what kind of data it points to
○ An int has type int
○ A pointer to an int has type int*
○ A pointer to a pointer to an int has type int**

● Expressions also have a type
○ If x has type int, then x+4 also has type int
○ If x has type int, then &x has type int*
○ If p has type int*, then *p has type int
○ If p has type int*, then &p has type int**

5Griffin Hurt - CS 0449

Pointers are variables, so they store data
● a variable is a named piece of memory
● a pointer is a variable that holds a memory address

int x = 0x100;
int y = 0x200;
int* px = &x;
int* py = &y;

6

Name Address Value

x DC00 0100

the addresses of these
variables are given to us

automatically by the compiler-ish

py DC0C DC04
px DC08 DC00
y DC04 0200

since pointers are variables,
can you get their addresses?

Griffin Hurt - CS 0449

Declaring pointers
● in Java, how do you declare an array of any type X?
○ you put square brackets after the type: X[]

7

int[]
an array that holds ints.

int[][]
an array that holds arrays,

and each of those holds ints.

int*
an pointer to an int.

int**
a pointer to a pointer, which

points to an int.
a C pointer can point to either a

single value or an array of that type.
Griffin Hurt - CS 0449

Griffin Hurt - CS 0449

The address-of operator (&)
● when used as a prefix operator, & means "address of"
○ it gives you the memory address of any variable, array item, etc.

● the address is given to you as a pointer type
○ i.e. it "adds a star" I know it seems backwards, why wouldn't they make * add a star, or name pointers int& right?

○ use it on an int?
■ you get an int*

○ use it on an int*?
■ you get an int**

○ YOU GET THE IDEA I hope
● you can use it on just about anything with a name
○ &x
○ &arr[10]
○ &main (yep!) google function pointers in C!

8

Accessing the
value(s)

at a pointer

9Griffin Hurt - CS 0449

The value-at (or "dereference") operator
● * is the value-at operator
○ it dereferences a pointer
○ that is, it accesses the memory that a pointer points to

● it's the inverse of &
○ every time you use it, you remove a star again, this feels backwards?

10

int** ppx = ...
int* px = *ppx;
int x = *px;

goes to the address that ppx
contains, and gets the int* there
goes to the address that px
contains, and gets the int there

Griffin Hurt - CS 0449

Arrays are just pointers well…sort of

● In C, array names are just aliases that can be used as pointers
○ int y[] = {2, 3, 4, 5}; // these two are
○ int *y = {2, 3, 4, 5}; // roughly equivalent

● Indexing and dereferencing pointers are equivalent
○ Side note: you can do math with pointers…this is called pointer arithmetic.
○ when you use the array indexing operator, you're really just adding an offset

to the pointer, and using that as the address to access.

*y ≡ y[0] *(y+1) ≡ y[1]

11Griffin Hurt - CS 0449

2 3 4 5
int int int intint*

y

Pointer types are important!
● If x is an int*8_t*, x[3] access elements at byte offset 3 ✕ 1 = 3
● If x is an int*32_t*, x[3] access elements at byte offset 3 ✕ 4 = 12

12Griffin Hurt - CS 0449

2 3 4 5
int8_t int8_t int8_t int8_t

int8_t*
y

2 3 4 5
int32_t int32_t int32_t int32_t

int32_t*
y

0 1 2 3

0 4 8 12

Pointer arithmetic
● if we write this:

int array[] = {0, 1, 2, 3};
● memory looks like this:
● if we want to access array[2]...
○ what is that equivalent to?
○ *(array + 2)

● but how big is each item in
the array? (what is sizeof(int)?)

● when we write array + 2, we don't get 0xDC02, we get 0xDC08
● it adds the size of 2 items to the address
● when you add or subtract offsets to pointers, C "scales" the offsets

by multiples of the size of the type they point to.

13

Name Address Value

array[3] DC0C 3
array[2] DC08 2
array[1] DC04 1
array[0] DC00 0

Griffin Hurt - CS 0449

Oh yeah, and that stupid -> operator
● if you have a pointer to a struct, you must access its fields

with: ->

14

Food* pgrapes = &produce[0];
pgrapes->price = 2.99;
(*pgrapes).price = 2.99;

these are identical
in meaning.

Griffin Hurt - CS 0449

Common pointer
patterns

15

I.e., String = char[] = char*

Griffin Hurt - CS 0449

Every problem in CS...
● ...can be solved with another level of

indirection/references/pointers.
● pointers are the basis of:
○ strings
○ arrays
○ object-oriented programming
○ dynamic memory management
○ pretty much everything your operating system does
○ pretty much everything... everything does.

● higher level languages often give you more abstract, safer
ways of achieving the same things that you can do with
pointers

16Griffin Hurt - CS 0449

Multi-dimensional arrays
● we already saw single-dimensional arrays, but…

17

int** arr2d = ...
…

1 9 4 3 0 7 6

2 2 0 0 5 3 9

6 0 4 3 7 7 7

1 2 3 4 5 6 7

a Java int[][]
works exactly the

same way!

Griffin Hurt - CS 0449

Pass-by-reference
● often you want to give another function access to your

variables.

18

fgets(buffer, 100, stdin);
int x, y;
function_that_returns_two_values(&x, &y);

since these functions have access to buffer, x,
and y, they can change their values.

Griffin Hurt - CS 0449

Pass-by-reference (example)

19

Quiz Time!
(Again, just for completion)
Password: ______

20

Pointer Lab

21Griffin Hurt - CS 0449

Solve a series of short coding
puzzles to better understand

how pointers work!

Getting set up

1. Download the starter code:
On Thoth:

wget https://cs0449.gitlab.io/sp2024/labs/02/pointerlab-handout.zip -O
pointerlab-handout.zip

1. Unzip to your private directory on Thoth
unzip pointerlab-handout.zip

- Creates a directory called pointerlab-handout that contains a number of files
- You will modify only the file pointer.c

22Griffin Hurt - CS 0449

https://cs0449.gitlab.io/sp2023/labs/02/pointerlab-handout.zip

pointer.c

● Skeleton for some programming exercises
● Comment block that describes exactly what the functions

must do
○ and what restrictions there are on their implementation.

23Griffin Hurt - CS 0449

TASK: Pointer Arithmetic

Goal

● Compute the size (how much memory a single one takes
up, in bytes) of an int

Hint

● Arrays of ints allocate contiguous space in memory so
that one element follows the next.

24Griffin Hurt - CS 0449

TASK: Manipulating Data Using Pointers
Motive/Goal

● Manipulate data in new ways with your new knowledge of pointers
● swapInts() - swap the values that two given pointers point to

(without changing the pointers themselves)
● serializeBE() - change the value of the elements of an array to

contain the data in an int.
○ Use big-endian order.
○ You are not permitted to use [] syntax to access or change elements in the array

anywhere in the pointer.c file.
● deserializeBE() - does the opposite operation of serializeBE().
● The serializeBE()/deserializeBE() functions emulate what would

happen when sending an int through the internet.

25Griffin Hurt - CS 0449

As an aside: Endianness

26Griffin Hurt - CS 0449

TASK: Pointers and Address Ranges
Goal

● Determine whether pointers fall within certain address ranges, defined by an
array.
○ Determine if the address stored in ptr is pointing to a byte that makes up some part of an array

element for the passed array. The byte does not need to be the first byte of the array element
that it is pointing to.

intArray: 0x0 size: 4 ptr: 0x0return: 1

intArray: 0x0 size: 4 ptr: 0xFreturn: 1

intArray: 0x0 size: 4 ptr: 0x10 return: 0
intArray: 0x100 size: 30 ptr: 0x12A return: 1

intArray: 0x100 size: 30 ptr: 0x50 return: 0

intArray: 0x100 size: 30 ptr: 0x18C return: 0

27Griffin Hurt - CS 0449

TASK: Byte Traversal
Motive

● Learn to read and write data by understanding the layout of the bytes.

Background

● C strings do not not how ‘long’ they are (No .length() method).
○ We need to calculate this ourselves.
○ All C strings are arrays of characters that end with a null terminator, \0.

Goal

● stringLength() - returns the length of a string, given a pointer to its
beginning.
○ Note that the null terminator character does NOT count as part of the string length.

● stringSpan (str1, str2) - returns the length of the initial portion of str1
which consists only of characters that are part of str2.
○ The search does NOT include the terminating null-characters of either strings, but ends there.

28Griffin Hurt - CS 0449

TASK: Selection Sort

● Your final task is to implement
selection sort
○ Just like 445… but in C

○ You may use loops and if
statements

○ But still no array syntax (array[])

29Griffin Hurt - CS 0449

In case you forgot…

30

Let:
arr:= array
n:= the length of arr

for i = 0 → (n-1)
minIndex = i
for j = (i+1) → n

if arr[minIndex] > arr[j]
minIndex = j

end if
end for
swap(arr[i], arr[minIndex])

end for

Griffin Hurt - CS 0449

➢ The following driver program has been provided to help you check the
correctness of your work:
ptest

checks functional correctness: Does your solution produce the expected result?

To use:
1. Build using make
2. Run using ./ptest

➢ You must rebuild each time you modify pointer.c

➢ Gradescope Autograder may test your program on inputs that ptest does not
check by default.

➢ Coding style (restriction) will be checked by grader TA on Gradescope

Evaluation

31Griffin Hurt - CS 0449

