
Shinwoo Kim
Teaching Assistant

shinwookim@pitt.edu
https://sites.pitt.edu/~shk148/

Spring 2023, Term 2234

Friday 12 PM Recitation

Jan 20th, 2023

Slides adapted from

Martha Dixon and Vinicius Petrucci

Department of Computer Science

School of Computing & Information

University of Pittsburgh

Recitation 5: File I/O and Project 1

Ø Agenda

Ø Course News

Ø File I/O

Ø Quiz!

Ø Project 1

CS 0449: Introduction to Systems Software Griffin Hurt

Griffin Hurt
Undergraduate Teaching Fellow

griffhurt@pitt.edu
https://griffinhurt.com

Spring 2024, Term 2244
Friday 2 PM Recitation

Feb 16th, 2024

Slides adapted from
Shinwoo Kim, Martha Dixon, and Vinicius Petrucci

Department of Computer Science
School of Computing & Information

University of Pittsburgh

Agenda

2

File I/O in C
– Standard integer sizes
– Reading/writing files

Quiz!
Project 1

Basics of File I/O
Reading and writing files in C

3Shinwoo Kim - CS 0449

What we have seen so far …
● In lab 0, you (maybe unknowingly) used command line arguments

to interact with your program
○ When you ran ./calculator 4 5 +

4Shinwoo Kim - CS 0449

● In lab 1, you used the standard I/O stream(s)
○ printf(), scanf(), and other <stdio.h> functions

● This week, we’ll learn to read and write from files on your
computer
○ which you will need to do for the first project

● In C, a file is simply a sequence (stream) of bytes:
○ Text files (or ASCII file) is sequence of ASCII code, i.e., each byte is the 8

bit code of a character (*.txt, *.c, etc.)
○ Binary files contains the original binary number as stored in memory (*.pdf,

*.doc, *.jpg, etc.)

What is a file?

5Shinwoo Kim - CS 0449

A hex dump of the 318 byte Wikipedia favicon

https://en.wikipedia.org/wiki/Hex_dump
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Favicon

Opening files with fopen()

FILE *fopen(const char * pathname, const char*mode);

> FILE* pt = fopen("E:\\PATH\program.txt","w");

6Shinwoo Kim - CS 0449

● opens the file whose name is the string pointed to by pathname and
associates a stream with it.

● returns a pointer (of type FILE) to the stream

Opening Files with fopen()
*fopen(const char * filename, const char * mode);

Modes:
○ r: opens an existing file for reading.
○ w: opens a file for writing.

● If filename does not exist, new file is created.
● starts writing at the beginning of file.

○ a: opens a text file for writing in appending mode.
● If filename does not exist, new file is created.
● start appending content in the existing file content.

○ r+: opens a file for both reading and writing.
○ b: indicates file is a binary file
○ and more…

■ Use man fopen to learn more

7Shinwoo Kim - CS 0449

fread() lets us read, fwrite() lets us write

fread(void *ptr, size_t size, size_t nmemb, FILE*
stream);
➢ reads nmemb items of data each size bytes long
➢ from stream
➢ stores them at the location given by ptr.

fwrite(const void *ptr, size_t size, size_t nmemb,
FILE * stream);
➢ writes nmemb items of data each size bytes
➢ to the stream
➢ from the location given by ptr.

8Shinwoo Kim - CS 0449

Reading and writing moves the pointer

9Shinwoo Kim - CS 0449

10100110101111111011111010111111100100011
10010000110000100100010010010000101100100
10100110101111111011111010111111100100011
10010000110000100100010010010000101100100
10100110101111111011111010111111100100011
10010000110000100100010010010000101100100
…

File * stream

> fread(ptr1, 1, 1, stream)

File * stream

> fwrite(ptr1, 1, 1, stream)

File * stream

Example
> fread(ptr1, 1, 1, stream)

This reads 1 byte and moves the file position indicator by 1 byte (8 bits).

> fread(ptr1, 4, 1, stream)

This reads 1 block of 4 bytes, moving the file position indicator by 4 bytes (4 * 8 = 32 bits).

> fread(ptr1, 4, 2, stream)

This reads 2 blocks of 4 bytes each from the file stream, moving the file position indicator by 4×2=8
bytes (8 * 8 = 64 bits).

10

We can rewind or fast-forward with fseek()

fseek(FILE *stream, long offset, int whence);

➢ sets the file position indicator for the stream
➢ new position (measured in bytes) = offset + whence.

whence:

● SEEK_SET - from start-of-file
● SEEK_CUR - from current position
● SEEK_END - from end-of-file

11Shinwoo Kim - CS 0449

Example

● fseek(file, 10, SEEK_SET)
moves the file position indicator 10 bytes from the beginning of the file.

● fseek(file, 10, SEEK_CUR)
moves the file position indicator 10 bytes forward from the current position in
the specified file stream.

● fseek(file, 10, SEEK_END)
moves the file position indicator 10 bytes before the end of the specified
file stream.

12

Always remember to save (and close) your files!

● Just like memory leaks, you may also get file handle leaks
○ If you use fopen(), always remember to fclose()

■ int fclose(FILE* filePointer)
● returns 0 on success!

● If you are confused about these functions → Consult the MANual

13Shinwoo Kim - CS 0449

Thoth man errors: try MANPATH= man 3 fopen

14

Quiz! (for participation again)
Password: _________

15

Project 1
Quick Guide

16

Project Brief

The goal of this project is to hide another image in a BMP file
– Steganography is the process of hiding data in an image
– BMP is a standard image format
*.BMP⇒ Bitmap Image File

– Container format for a big array of pixels (picture cells)
– Each pixel is represented by a 24-bit number:

● 8 bit for Red (0-255)
● 8 bit for Green (0-255)
● 8 bit for Blue (0-255)

17

Pixels

Step 1. Read the BMP file

Your task is to read the BMP file
and print its header to the screen

Hint: defines structs and read
the structs using
fread(&stuct,...)

IMPORTANT NOTE: use
fopen(<filename>, “rb+”)
to mitigate text loading issues

$./bmp_steganography --info supported_bmp_file.bmp
=== BMP Header ===
Type: BM Size: 2073654
Reserved 1: 0
Reserved 2: 0
Image offset: 54
=== DIB Header ===
Size: 40
Width: 960
Height: 720
color planes: 1
bits per pixel: 24
Compression scheme: 0
Image size: 2073600
Horizontal resolution: 7559
Vertical resolution: 7559
colors in palette: 0
important colors: 0

18

BMP File

The beginning of the BMP is a header which contains
metadata (key details about the picture)

19

Header54 bytes

Image
content

24-bit lena.bmp

b044d2a9b13ae35152a
b5d93a49cc112b044d2
a9251d9ed69482c88a4
077c619bcfcf227afbc
0c6e6529aac435c7696
96ddb6206340827ab55
9e6029a99aae4a62f62
2a699eae0750fec6f65
f74d5d28f1e9a99aae4

b13ae35152ab5d93a49
cc112b044d2a9b13ae354 bytes

Image
content

24-bit lena.bmp

19

20

BMP Header

Bitmap File Header
Identifier (ID) 2

File Size 4
Reserved 4

Bitmap Data Offset 4
DIB Header

Bitmap Header Size 4
Width 4
Height 4
Planes 2

Bits Per Pixel 2
Compression 4

Bitmap Data Size 4
H-Resolution 4
V-Resolution 4
Used Colors 4

Important Colors 4

File header
(14 bytes)

DIB Header
(40 bytes)

Header

21

Size of BMP

Size of BMP file
– Size of Header + Size of Image

● Size of Image = Width * Height * Size of Pixel (3-bytes)
Note. Width must account for padding

– Padding is applied if length of each row is not a multiple of 4 Bytes
– Basic formula is 4 – ((width*3) % 4) BUT special case for 0…

Example BMP Header

22

$./bmp_steganography --info supported_bmp_file.bmp
=== BMP Header ===
Type: BM
Size: 2073654
Reserved 1: 0
Reserved 2: 0
Image offset: 54

=== DIB Header ===
Size: 40
Width: 960
Height: 720
color planes: 1
bits per pixel: 24
Compression scheme: 0
Image size: 0
Horizontal resolution: 0
Vertical resolution: 0
colors in palette: 0
important colors: 0

First two bytes must be BM (not Nul-terminated)

Keep reserved values as zero

See handout for the rest.

23

Phase 2: Swap the nybbles

Use bitwise shifts and masking to move the least significant
bits (last 4 bits) to the most significant bits (top 4 bits)

– Might not need to use a mask depending on the implementation
For ”hide”, use the nybble from the other BMP file instead of
just swapping the ones in the first file

– You’ll need to read in pixels from both files

24

Phase 3. Rewrite the BMP

– fseek() to get back to the beginning of pixels (use header offset)
– fwrite() to the file

Caveats
● Pixels are BGR; Pixels are stored directly in the image section
● Each row has padding
● Pixels are stored Bottom → Top

● Shouldn’t matter if you read to a pixel array

25

Remarks

See handout for
– Reading command line arguments
– Compactness of Structs

● !!!
– Makefiles

