CS 0449: Introduction to Systems Software | Griftin Hurt

Griffin Hurt Recitation 5: File YO and Project 1

Undergraduate Teaching Fellow
griffhurt@pitt.edu

https://griffinhurt.com > Agenda
> Course News
Spring 2024, Term 2244 > File /0
Friday 2 PM Recitation
izl
Feb 16th, 2024 > Quiz!
> Project 1

Slides adapted from
Shinwoo Kim, Martha Dixon, and Vinicius Petrucci

Department of Computer Science
School of Computing & hformation
University of Pittsburgh

File /O in C

— Standard integer sizes
— Reading/writing files
Quiz!

Project 1

University of ‘)
%J Pittsburgh | Siiormem ™

Basics of File 1/0

Reading and writing files in C

[[~ 1% hexdump -C binary_file_example
00000000 41 00 41 00 0O 00 42 00 42
00000010 0O 00 44 00 44 00 00 00 45
00000020 46 00 00 00 47 00 47 00 00
00000030 49 00 49 00 00 00 4a 00 4a
00000040 0O 00 4c 00 4c 0O 00 00 4d

00000050 4e 00 00 00 4f 00 4f 0 00
00000060 51 00 51 00 00 0O 52 0 52
00000070 00 00 54 00 54 00 00 O 55
00000080 56 00 00 00 57 00 57 0 00
00000090 59 00 59 00 00 00 5a 00 5Sa
0000009c

Shinwoo Kim - CS 0449

What we have seen so far ...

® |nlab 0, you (maybe unknowingly) used command line arguments
to interact with your program
o Whenyouran ./calculator[4 5 +

e |nlab 1, you used the standard I/0 stream(s)
o printf(), scanf(), and other <stdio.h> functions
e This week, we’ll learn to read and write from files on your

computer
o which you will need to do for the first project

Shinwoo Kim - CS 0449

What is a file?

e In C, afile is simply a sequence (stream) of bytes:
o Text files (or ASCII file) is sequence of ASCII code, i.e., each byte is the 8
bit code of a character (*.txt, *.c, etc.)

o Binary files contains the original binary number as stored in memory (*.pdf,
*.doc, *.jpg, etc.)

0000000
0000010
000006020
0000030
0000040
0000050
0000060
0000070
0000080

0000090
00000ao
000060bO

A hex dump of the 318 byte Wikipedia favicon

Shinwoo Kim - CS 0449

https://en.wikipedia.org/wiki/Hex_dump
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Favicon

Opening files with fopen()

FILE *fopen(const char * pathname, const char*mode);

> FILE* pt = fopen("E:\\PATH\program.txt","w");
e opens the file whose name is the string pointed to by pathname and
associates a stream with it.
e returns a pointer (of type FILE) to the stream

Shinwoo Kim - CS 0449

Opening Files with fopen()

*fopen(const char * filename, const char * mode);

Modes:

o r:opens an existing file for reading.

o w: opens a file for writing.
e |f filename does not exist, new file is created.
e starts writing at the beginning of file.
o a: opens a text file for writing in appending mode.
e |f filename does not exist, new file is created.
e start appending content in the existing file content.
o r+: opens a file for both reading and writing.
o b: indicates file is a binary file
o and more...
m Use man fopen to learn more

Shinwoo Kim - CS 0449

fread() lets us read, fwrite() lets us write

fread(void *ptr, size t size, size_t nmemb, FILE*
stream);

> reads nmemb items of data each size bytes long

> from stream

> stores them at the location given by ptr.

fwrite(const void *ptr, size t size, size_t nmemb,
FILE * stream);

> writes nmemb items of data each size bytes

> to the stream

> from the location given by ptr.

Shinwoo Kim - CS 0449

Reading and writing moves the pointer

File * stream File * stream File * stream

} | }

101001101011111110111110101111111060100011
10010000110000100100010010010000101100100
10100110101111111011111010111111100100011
10010000110000100100010010010000101100100
101001101011111110111110101111111060100011

10010000110000100100010010010000101100100
> fread(ptrl, 1, 1, stream)
> fwrite(ptrl, 1, 1, stream)

Shinwoo Kim - CS 0449

Example

> fread(ptrl, 1, 1, stream)

This reads 1 byte and moves the file position indicator by 1 byte (8 bits).

> fread(ptrl, 4, 1, stream)

This reads 1 block of 4 bytes, moving the file position indicator by 4 bytes (4 * 8 = 32 bits).

> fread(ptrl, 4, 2, stream)

This reads 2 blocks of 4 bytes each from the file stream, moving the file position indicator by 4x2=8
bytes (8 * 8 = 64 bits).

10

We can rewind or fast-forward with fseek()

fseek(FILE *stream, long offset, int whence);

> sets the file position indicator for the stream
> new position (measured in bytes) = offset + whence.

whence:

® SEEK SET - from start-of-file
® SEEK CUR - from current position
® SEEK END - from end-of-file

Shinwoo Kim - CS 0449

11

Example

o fseek(file, 10, SEEK_SET)
moves the file position indicator 10 bytes from the beginning of the file.

o fseek(file, 10, SEEK_CUR)
moves the file position indicator 10 bytes forward from the current position in

the specified file stream.

o fseek(file, 10, SEEK END)

moves the file position indicator 10 bytes before the end of the specified

file stream.

12

Always remember to save (and close) your files!

e Just like memory leaks, you may also get file handle leaks
o If you use fopen(), always remember to fclose()
B int fclose(FILE* filePointer)

e returns © on success!
ut these functions — Consult the MANual

& (0]

e [f you are confused abo

s

¥ -

testingdocs@ubuntu: ~ Q =
man -f [whatis options] page ...

man -1 [man options] file ...

man -w|-W [man options] page ...

DESCRIPTION
man 1is the system's manual pager. Each page argument
given to man is normally the name of a program, util-
ity or function. The manual page associated with each
of these arguments is then found and displayed. A
section, 1if provided, will direct man to look only in
that section of the manual. The default action is to
search in all of the available sections following a
pre-defined order (see DEFAULTS), and to show only the

Thoth man errors: try MANPATH= man 3 fopen

Shinwoo Kim - CS 0449

13

Quiz! (for participation again)

Password:

Project1

Quick Guide

Project Brief

The goal of this project is to hide another image in a BMP file
- Steganography is the process of hiding data in an image
- BMP is astandard image format

* . BMP = Bitmap Image File
- Container format for a big array of pixels (picture cells)
- Each pixel is represented by a 24-bit number:
e 8bitfor Red (0-255)
e 8bitfor Green (0-255)
e 8 bit for Blue (0-255)

University of ‘
¢J Pittsburgh

Pixels on the

o computer screen
Each screen pixel is represented by three groups

of eight pixels, for a total of 24 bits.
Blue Green Red

o(ojojO|O|O|O|O] |11)1 |11 |11 IRRRRRRRRRRERER
| |m_
PN A

|Picker\

Photoshop color picker shows the
R, G, B components that make "uellow.”

University of)
%9 Pittsburgh | S

Step 1. Read the BMP file

$./bmp_steganography --info supported bmp_file.bmp

Your task is to read the BMP file Z_1"BMP Header ===
. . Type: BM Size: 2073654
and print its header to the screen Reserved 1: ©
: : ;eservegfgéte 54
. mage O .
Hint: defines structs andread §==gDIE Hosder ooe
. ize: 40
the structs using Hidiﬂ: 960
ight: 720
fread(&StUCt;) #egglor‘ planes:ll
bit r pi 24
IMPORTANT NOTE: use Compr‘ngionp;?ﬁeme:)
. N " Image size: 2073600 '
fopen(<filename>, “rb+") o rere ot one 528
to mitigate text loading issues b Soortamt Paleresiel

Umversny of
PlttS

BMP File

The beginning of the BMP is a header which contains
metadata (key details about the picture)

54 bytes { Header 54 bytes {

—

b044d2a9bl13ae35152a
b5d93a49cc112bo44d2
29251d9ed69482c88a4
077c619bcfcf227afbc
WECINS I 0 Ge6529aac435¢7696
content 96ddb6206340827ab55
9e6029a99aae4a62162
2a699eaed750fec6f65
£74d5d28f1e9a99%aaes

Image
==
content

24-bit lena.bmp ’ 24-bit lena.bmp

University of ‘)
%9 Pittsburgh | S

BMP Header

B Bitmap File Header

File header Identifier (ID)
— File Size

(14 byteS) Reserved
Bitmap Data Offset
DIB Header
— Bitmap Header Size
Width
Header Height

Planes

DIB Header Bits Per Pixel

Compression

(40 byteS) Bitmap Data Size
H-Resolution
V-Resolution
Used Colors

EEN BN B)

B I I () S S S ST [I

— Important Colors

University of)
%J Pittsburgh | Siiormem ™

Size of BMP

Size of BMP file
- Size of Header + Size of Image
e Sijze of Image = Width * Height * Size of Pixel (3-bytes)
Note. Width must account for padding

- Padding is applied if length of each row is hot a multiple of 4 Bytes
- Basicformulais4 - ((width*3) % 4) BUT special case for O...

Pixel
Length: * .I el

Length: 8B

Leneth: 128 .:-:- .
Leneth: 128 .:-:-:-:.

University of ‘
¢J Pittsburgh

Example BMP Header

$./bmp_steganography --info supported bmp file.bmp

=== BMP Header ===

Type: BM : i .
S)i”z)e: 2073654 First two bytes must be BM (not Nul-terminated)
Reserved 1: ©

Reserved 2: ©

Image offset: 54

=== DIB Header

Size: 490 Keep reserved values as zero
Width: 960

Height: 720

color planes: 1

bits per pixel: 24

Compression scheme: ©
Image size: @ : See handout for the rest.
Horizontal resolution: ©

Vertical resolution: ©
colors in palette: ©
important colors: 0

Umversny of
PlttS

Phase 2: Swap the nybbles

Use bitwise shifts and masking to move the least significant
bits (last 4 bits) to the most significant bits (top 4 bits)

- Might not need to use a mask depending on the implementation
For "hide”, use the nybble from the other BMP file instead of

just swapping the ones in the first file
- You'll need to read in pixels from both files

University of ‘
¢J Pittsburgh

Phase 3. Rewrite the BMP

- fseek() togetbacktothe beginning of pixels (use header offset)
- fwrite() tothefile

Caveats
e Pixels are BGR; Pixels are stored directly in the image section
e Eachrow has padding
e Pixels are stored Bottom — Top
e Shouldn’t matter if you read to a pixel array

University of ‘
¢J Pittsburgh

See handout for
- Reading command line arguments
- Compactness of Structs
o Il

- Makefiles

[* ¢] Uni versnty of)
Pltts burgh | S

