
Shinwoo Kim
Teaching Assistant

shinwookim@pitt.edu
https://sites.pitt.edu/~shk148/

Spring 2023, Term 2234

Friday 12 PM Recitation

Jan 20th, 2023

Slides adapted from

Martha Dixon and Vinicius Petrucci

Department of Computer Science

School of Computing & Information

University of Pittsburgh

Recitation 6: Assembly

Ø Agenda

Ø Course News

Ø Assembly

Ø Quiz

Ø Malloc or Quiz 4, your call!

CS 0449: Introduction to Systems Software Griffin Hurt

Griffin Hurt
Undergraduate Teaching Fellow

griffhurt@pitt.edu
https://griffinhurt.com

Spring 2024, Term 2244
Friday 2 PM Recitation

Feb 23rd, 2024

Slides adapted from
Shinwoo Kim, Martha Dixon, and Vinicius Petrucci

Department of Computer Science
School of Computing & Information

University of Pittsburgh

Agenda

2

Course News!
Assembly Overview
Quiz
Let’s take a poll…

Lab 4 or Malloc?

3

Course News

Lab 4 (Assembly Lab) is out, due February 29th at 5:59PM
Consider coming to my Monday or Tuesday office hours (The line gets
long on Thursdays)

Malloc Project due Monday March 4th at 5:59PM
It’s a doozy, start early please!

Assembly Language
Because decoding 1s and 0s is hard

4

What we are building towards…

5

gcc hello.c

cpphello.c

C source

Preprocessed

hello.c

Preprocessed
source

hello.o

Object
files

hello

Executable

Preprocessor
gcc -E hello.c

ld

Linker
gcc -u hello hello.o

Compiler
gcc -c hello.c

cc1

Any additional libraries
get “linked” in here (e.g.,
stdio.h)

Assembly code

hello.s

gcc -S hello.c

6

Level of
abstraction

Very
abstract

Not
abstract

Application level (Word, Zoom, Firefox)

car *c = malloc(sizeof(car));
c->miles = 100;
float mpg = get_mpg(c);
free(c);

High-level language level (C, Java)

get_mpg:
pushq
%rbp
movq

%rsp, %rbp
...
popq

%rbp
ret

Assembly language level
(x86)

Machine language level
0111010000011000100011010000
0100000000101000100111000010
1100000111111010000111111000
1001110000101000100111000010
100010100010

Operating system level (Linux, Windows,
macOS)

Hardware
level

Moving down the ladder of abstractions

What is assembly?
➔ Assembly language is a human-readable textual

representation of machine language

7

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

get_mpg:
pushq %rbp
movq
%rsp, %rbp
...
popq
%rbp
ret

011101000001100010001101000
001000000001010001001110000
101100000111111010000111111
100000111111010000111111100

Relatively Easy for us to understand

Easy for computer
to understand

Assembly acts as a
translator between

high-level code and
machine code

High-level language
(C, Java)

Machine language

Keeping track of the registers

● Like in MIPS, x86 has calling conventions
○ The C Application Binary Interface (ABI)
○ Like MIPS, certain registers are typically used for returns values, args, etc

● The ABI is not defined by the language, but rather the OS
○ Windows and Linux (UNIX/System V) have a different C ABI

● In our x86-64 Linux C ABI,
○ %rdi, %rsi, %rdx, %rcx, %r8, %r9 are used to pass arguments (like

the a registers in MIPS)
■ Remaining arguments go on the stack

○ A function callee must preserve %rbp, %rbx, %r12, %r13, %r14, %r15
(like the s registers in MIPS)

○ %rax (overflows into %rdx for 128-bits) stores the return value (like v0, v1
in MIPS)

● Reference manual provides extra information

8

9

10

11

12

13

14

15

16

Will I have to write assembly code for this course?

● No! No matter how good you are at programming, you are no
match for a modern compiler
○ Modern Compilers are just too good at optimization

■ There was a time when humans outperformed compilers
● Those days are long gone now…

● However, you should be able to read assembly code
○ To figure out what your machine is doing
○ To guess the C code

● By the end of this lab, you should be able to freely translate
assembly and C

17

Quiz time!
Password is _________

18

Diving into the Code!
See code: https://github.com/shinwookim/asm-demo

19

https://github.com/shinwookim/asm-demo

Hello World! x86 edition

20

#include <stdio.h>
int main(void)
{

puts("Hello World!");
return 0;

}

.LC0:
.string "Hello World!"

main:
pushq %rbp
movq %rsp, %rbp # rsp = stack pointer
movl $.LC0, %edi # push func args
call puts # call a function
movl $0, %eax # eax = return register
popq %rbp # prepare to return
ret # return

text (code) segment:

55 48 89 E5 BF 00 00 00 00 E8 00 00 00

00 B8 00 00 00 00 5D C3

data segment:
48 65 6C 6C 6F 2C 20 57 6F 72 6C

// Symbol table and other info omitted

Linker Executable

Debugging Assembly

● Recall that GDBworked on executables
○ You ran gdb mdriver and not gdb mdriver.c

● Having the source was nice
○ We used the -g flag when compiling
○ which allowed us to use layout src to view the code during execution

● …but not necessary
● What if we don’t have a source file ? (or the program was compiled without -g flag)

○ We can still run GDB!
○ Won’t be able to see the source code ⇒We need to inspect assembly code

Reading symbols from a.out...
(No debugging symbols found in a.out)

21

Displaying the assembly with disas

● Suppose we are in paused in a
breakpoint

● We can view the assembly code
around our current memory
address using disas
○ Memory address that is held by the

program counter
● But how do we set a breakpoint

○ if we don’t have the code?
● Surely, we need a way to view

ASM
○ Without first setting a breakpoint

right?

22

23

● The layout asm
command displays the
assembly of the entire
program

○ You can scroll through the
code and identify the
memory addresses to set
breakpoints

● But what if your
program is Huuuuge?

○ That’s gonna be a lot of
scrolling

Displaying the assembly with layout asm

Let’s put the asm in a file ⇒ Now we can ctrl+f
objdump -d program > program.s

● GNU provides a tool called object dump for unix-like systems
○ Let’s you inspect information from object files
○ The -d flag disassembles the program and displays the .code section
○ The > flag redirects your standard I/O output to a file

24

USER@thoth:$ objdump -d a.out
a.out: file format elf64-x86-64
Disassembly of section .init:
0000000000001000 <_init>:

1000: f3 0f 1e fa endbr64
1004: 48 83 ec 08 sub $0x8,%rsp
1008: 48 8b 05 d9 2f 00 00 mov 0x2fd9(%rip),%rax # 3fe8
100f: 48 85 c0 test %rax,%rax
1012: 74 02 je 1016 <_init+0x16>
1014: ff d0 call *%rax
1016: 48 83 c4 08 add $0x8,%rsp
101a: c3 ret

…

GDB Assembly Edition

● Back to GDB…
● You can still set breakpoints

○ Not at specific lines of code…but at specific instructions (which are stored in
memory)

○ break *0x000055555555515b
○ Why the *?
○ *main+24

■ You can set breakpoints at function offsets
■ Get this from GDB’s layout asm

● You can still step through your code
○ Again, not stepping through lines of code, but through CPU instructions
○ Using stepi instead of step

■ nexti instead of next
■ Continue

25

GDB Assembly Edition

● Examining Memory
○ We can print values stored at memory address or at registers
○ print/format expr

■ Indicate registers with $ (NOT %)
■ To print a value stor`ed in a memory address use *
■ format tells us how to interpret values at that memory location

● d: decimal
● x:hex
● t: binary
● f: floating point
● i: instruction
● c: character

■ p $rdi displays the content at %rdi in a decimal format
○ x MEM_ADDR prints memory content

● Just because you print it as decimal does not mean that the value is a decimal
● Interpretation of values depends on the context (which you need to provide)

○ info registers lets you see all registers at once

26

Need help with GDB?
Come to office hours!

27

#include <stdio.h>

int main(void)

{

for (int i = 0; i < 10; i++)

{

printf("%d", i);

}

return 0;

}

C Control Structures →Assembly

28

0x0000000000001155 <+12>: movl $0x0,-0x4(%rbp)
0x000000000000115c <+19>: jmp 0x117b <main+50>
0x000000000000115e <+21>: mov -0x4(%rbp),%eax
0x0000000000001161 <+24>: mov %eax,%esi
0x0000000000001163 <+26>: lea 0xe9a(%rip),%rax
0x000000000000116a <+33>: mov %rax,%rdi
0x000000000000116d <+36>: mov $0x0,%eax
0x0000000000001172 <+41>: call 0x1050 <printf@plt>
0x0000000000001177 <+46>: addl $0x1,-0x4(%rbp)
0x000000000000117b <+50>: cmpl $0x9,-0x4(%rbp)
0x000000000000117f <+54>: jle 0x115e <main+21>

#include <stdio.h>

int main(void)
{

int i = 0;
while (i < 10)
{

printf("%d", i);
i++;

}
return 0;

}

C Control Structures →Assembly

29

0x0000000000001155 <+12>: movl $0x0,-0x4(%rbp)
0x000000000000115c <+19>: jmp 0x117b <main+50>
0x000000000000115e <+21>: mov -0x4(%rbp),%eax
0x0000000000001161 <+24>: mov %eax,%esi
0x0000000000001163 <+26>: lea 0xe9a(%rip),%rax
0x000000000000116a <+33>: mov %rax,%rdi
0x000000000000116d <+36>: mov $0x0,%eax
0x0000000000001172 <+41>: call 0x1050 <printf@plt>
0x0000000000001177 <+46>: addl $0x1,-0x4(%rbp)
0x000000000000117b <+50>: cmpl $0x9,-0x4(%rbp)
0x000000000000117f <+54>: jle 0x115e <main+21>

#include <stdio.h>

int main(void)

{

for (int i = 0; i < 10; i++)

{

printf("%d", i);

}

return 0;

}

C Control Structures →Assembly

30

0x0000000000001155 <+12>: movl $0x0,-0x4(%rbp)
0x000000000000115c <+19>: jmp 0x117b <main+50>
0x000000000000115e <+21>: mov -0x4(%rbp),%eax
0x0000000000001161 <+24>: mov %eax,%esi
0x0000000000001163 <+26>: lea 0xe9a(%rip),%rax
0x000000000000116a <+33>: mov %rax,%rdi
0x000000000000116d <+36>: mov $0x0,%eax
0x0000000000001172 <+41>: call 0x1050 <printf@plt>
0x0000000000001177 <+46>: addl $0x1,-0x4(%rbp)
0x000000000000117b <+50>: cmpl $0x9,-0x4(%rbp)
0x000000000000117f <+54>: jle 0x115e <main+21>

Wait….why is the assembly code the same?

for loops == while loops!
Your CPU treats them the same way!

* do-while loops also work the same way (Write a short program and inspect the assembly!)

31

#include <stdio.h>

int main(void)

{

int input;

scanf("%d", &input);

if (input > 10)

printf("Big");

else printf("Not Big");

return 0;

}

C Control Structures →Assembly

32

11bf: 8b 45 f4 mov -0xc(%rbp),%eax
11c2: 83 f8 0a cmp $0xa,%eax
11c5: 7e 16 jle 11dd <main+0x54>
11c7: 48 8d 05 39 0e 00 00 lea 0xe39(%rip),%rax
11ce: 48 89 c7 mov %rax,%rdi
11d1: b8 00 00 00 00 mov $0x0,%eax
11d6: e8 a5 fe ff ff call 1080
<printf@plt>
11db: eb 14 jmp 11f1 <main+0x68>
11dd: 48 8d 05 27 0e 00 00 lea 0xe27(%rip),%rax
11e4: 48 89 c7 mov %rax,%rdi
11e7: b8 00 00 00 00 mov $0x0,%eax
11ec: e8 8f fe ff ff call 1080
<printf@plt>

Conditional statements
works as expected
Who knew that if-else executed different based on
conditions?

33

34

Our real first assembly
code analysis
Looking through a real program!

Special thanks to Jake Kasper for providing slides & code

35

0000000000001149 <main>:

1149: f3 0f 1e fa endbr64

114d: 55 push %rbp

114e: 48 89 e5 mov

%rsp,%rbp

1151: 48 83 ec 20 sub

$0x20,%rsp

1155: 89 7d ec mov %edi,-

0x14(%rbp)

1158: 48 89 75 e0 mov %rsi,-

0x20(%rbp)

115c: bf 05 00 00 00 mov

$0x5,%edi

1161: e8 23 00 00 00 call

1189<increment>

1166: 89 45 fc mov

%eax,-0x4(%rbp)

(…)

C Control Structures →Assembly

36

#include <stdio.h>

int main(int argc, char **argv)
{

int myNum = increment(5);
printf("My num is %d\n", myNum);
return 0;

}

int increment(int num)
{

return ++num;
} Prefix increment

Increments first, then returns

#include <stdio.h>

int main(int argc, char **argv)
{

int myNum = increment(5);
printf("My num is %d\n", myNum);
return 0;

}

int increment(int num)
{

return ++num;
}

0000000000001189 <increment>:

1189: f3 0f 1e fa endbr64

118d: 55 push %rbp

118e: 48 89 e5 mov

%rsp,%rbp

1191: 89 7d fc mov

%edi,-0x4(%rbp)

1194: 83 45 fc 01 addl

$0x1,-0x4(%rbp)

1198: 8b 45 fc mov -

0x4(%rbp),%eax

119b: 5d pop %rbp

119c: c3 ret

C Control Structures →Assembly

37

0000000000001189 <increment>:

1189: f3 0f 1e fa endbr64

118d: 55 push %rbp

118e: 48 89 e5 mov

%rsp,%rbp

1191: 89 7d fc mov

%edi,-0x4(%rbp)

1194: 83 45 fc 01 addl

$0x1,-0x4(%rbp)

1198: 8b 45 fc mov -

0x4(%rbp),%eax

119b: 5d pop %rbp

119c: c3 ret

#include <stdio.h>

int main(int argc, char **argv)
{

int myNum = increment(5);
printf("My num is %d\n", myNum);
return 0;

}

int increment(int num)
{

return ++num;
}

C Control Structures →Assembly

38

%rbp needs maintains the current stack frame
- To preserve the previous stack frame
- it gets pushed onto the stack

0000000000001189 <increment>:

1189: f3 0f 1e fa endbr64

118d: 55 push %rbp

118e: 48 89 e5 mov

%rsp,%rbp

1191: 89 7d fc mov

%edi,-0x4(%rbp)

1194: 83 45 fc 01 addl

$0x1,-0x4(%rbp)

1198: 8b 45 fc mov -

0x4(%rbp),%eax

119b: 5d pop %rbp

119c: c3 ret

#include <stdio.h>

int main(int argc, char **argv)
{

int myNum = increment(5);
printf("My num is %d\n", myNum);
return 0;

}

int increment(int num)
{

return ++num;
}

C Control Structures →Assembly

39

%edi is our first argument register, so we’re
moving the value of our argument (num) into the
current stack frame Why -0x4?

0000000000001189 <increment>:

1189: f3 0f 1e fa endbr64

118d: 55 push %rbp

118e: 48 89 e5 mov

%rsp,%rbp

1191: 89 7d fc mov

%edi,-0x4(%rbp)

1194: 83 45 fc 01 addl

$0x1,-0x4(%rbp)

1198: 8b 45 fc mov -

0x4(%rbp),%eax

119b: 5d pop %rbp

119c: c3 ret

#include <stdio.h>

int main(int argc, char **argv)
{

int myNum = increment(5);
printf("My num is %d\n", myNum);
return 0;

}

int increment(int num)
{

return ++num;
}

C Control Structures →Assembly

40

Increment the value of the argument we just
stored in the stack

0000000000001189 <increment>:

1189: f3 0f 1e fa endbr64

118d: 55 push %rbp

118e: 48 89 e5 mov

%rsp,%rbp

1191: 89 7d fc mov

%edi,-0x4(%rbp)

1194: 83 45 fc 01 addl

$0x1,-0x4(%rbp)

1198: 8b 45 fc mov -

0x4(%rbp),%eax

119b: 5d pop %rbp

119c: c3 ret

#include <stdio.h>

int main(int argc, char **argv)
{

int myNum = increment(5);
printf("My num is %d\n", myNum);
return 0;

}

int increment(int num)
{

return ++num;
}

C Control Structures →Assembly

41

Move our data we’ve been editing in the stack, to
our return register

0000000000001189 <increment>:

1189: f3 0f 1e fa endbr64

118d: 55 push %rbp

118e: 48 89 e5 mov

%rsp,%rbp

1191: 89 7d fc mov

%edi,-0x4(%rbp)

1194: 83 45 fc 01 addl

$0x1,-0x4(%rbp)

1198: 8b 45 fc mov -

0x4(%rbp),%eax

119b: 5d pop %rbp

119c: c3 ret

#include <stdio.h>

int main(int argc, char **argv)
{

int myNum = increment(5);
printf("My num is %d\n", myNum);
return 0;

}

int increment(int num)
{

return ++num;
}

C Control Structures →Assembly

42

Pop the stack frame from the stack, as we’re
about to return from the current function scope,
and this will load the previous stack frame back
to %rbp

0000000000001189 <increment>:

1189: f3 0f 1e fa endbr64

118d: 55 push %rbp

118e: 48 89 e5 mov

%rsp,%rbp

1191: 89 7d fc mov

%edi,-0x4(%rbp)

1194: 83 45 fc 01 addl

$0x1,-0x4(%rbp)

1198: 8b 45 fc mov -

0x4(%rbp),%eax

119b: 5d pop %rbp

119c: c3 ret

#include <stdio.h>

int main(int argc, char **argv)
{

int myNum = increment(5);
printf("My num is %d\n", myNum);
return 0;

}

int increment(int num)
{

return ++num;
}

C Control Structures →Assembly

43

Return to caller
What about the return value?
It’s already in the return

register(%eax)

Let’s inspect increment() with GDB

44

Set a breakpoint at the start of the
assembly for increment using the *

Tracing through the code w/ GDB

45

After running, we’ve hit the breakpoint
at increment

Let’s read the assembly line by line
using ni (`next instruction`), though we
can skip ahead a few lines until we get
to the more important function details

Tracing through the code w/ GDB

46

This is the line in which our stack
frame pointer, %rbp, is being updated
to contain the current stack address

Tracing through the code w/ GDB

47

We’ve now executed the instruction to
add the current stack pointer to %rbp

We are also about to execute the line
to put the argument register’s contents
into the stack frame, so let’s check the
value of the argument register:

p $rdi→

This makes sense, as we passed 5 into
our function in our C code

Tracing through the code w/ GDB

48

Now we stored the argument register
value into our stack frame. To check
that this update actually changed our
stack frame, let’s print the integer that
lies below the stack pointer:

x/-4bx $rbp→ Read the previous 4
bytes

x/-1w $rbp→ Read the previous
word (word is the size of an integer)

We can see both of these led us to the
value 5 being stored in the stack frame

Tracing through the code w/ GDB

49

At this point, we’ve run the line to
increment the value in the stack frame,
and are waiting to execute this line.

To see if this change was made, let’s
again print out the values:

x/-4bx $rbp→ Read the previous 4
bytes as hex

x/-1wx $rbp→ Read the previous
word (word is the size of an integer) as
hex

Since the value changed to 6, the
increment was successful, and we can
see where that change occurred.

Tracing through the code w/ GDB

50

%eax, the return register, should
contain the value 6 that we want to
return to the user. Let’s see:

p $rax→

%eax now contains the accurate return
value from our function, so we can
return to the previous caller after
adjusting the stack.

Lab 4
Assembly Lab: ASM!

51

Now, it’s your turn!

● In lab 4, you will practice:
○ Reading assembly
○ Recognizing common patterns
○ Using gdb to debug assembly code + inspect memory!

● Part A: Investigating the code!
○ Reading simple functions

■ Similar to what we just did
○ Deep dive into control flow, raise operations, hidden arguments
○ The Test.

■ Can you read assembly code tell me what it does?
● Gradescope submission

● Part B: Inspecting memory
○ Can you debug an executable by looking at assembly code and using gdb?

■ Gradescope submission

52

Malloc Tutorial
CS 0449: Introduction to System Software

Slides from Shinwoo Kim

54

Malloc Implementation

Consider an allocator implementation with the following characteristics:

The first-fit free algorithm is used to allocate data.
All blocks have a header with a size and a pointer to the previous block.
The header is 16B (2*8bytes) in size.
Positive sizes indicate the block is allocated, and negative sizes indicate it is free.
All freed blocks are immediately coalesced if possible.
When a block is split, the lower (first) part of the block becomes the allocated part and the
upper (second) part becomes the new free block.
If the heap doesn’t have enough space to hold the data, it grows by the minimum amount
needed to fit the data. Always successfully.

55

Malloc Implementation

Consider an allocator implementation with the following characteristics:

The first-fit free algorithm is used to allocate data.
All blocks have a header with a size and a pointer to the previous block.
The header is 16B (2*8bytes) in size.
Positive sizes indicate the block is allocated, and negative sizes indicate it is free.
All freed blocks are immediately coalesced if possible.
When a block is split, the lower (first) part of the block becomes the allocated part and the
upper (second) part becomes the new free block.
If the heap doesn’t have enough space to hold the data, it grows by the minimum amount
needed to fit the data. Always successfully.

56

Memory Diagram
E.g., the following heap contains an allocated block of size 16, followed by a free block of size 32.
The top row contains memory addresses, and the bottom row contains the values stored at those
memory addresses.

Address 0xa000 0xa008 … 0xa020 0xa028 …

Value 16 0x0000 … -32 0xa000 …

16 Allocated to
user -32 Free Block

16B 16B16B 32B

0xa000 0xa020

What are these values?
🤷

57

Assuming an initially empty heap, and given the current state of the heap represented
below, which of the malloc sequence was executed?

Address 0xa000 0xa008 …

Value -64 0x0000 …

1. The only block in the heap is a free block of size 64B
→ For there to be a free block, a block must first have been allocated, then freed
→ Look for malloc() and free() sequence (in that order!)

p0 = malloc(64);
free(p0);

p0 = malloc(64);
p1 = malloc(32);
free(p0);
free(p1);

p0 = malloc(64); p0 = malloc(32);
p1 = malloc(32);
free(p0);
free(p1);

58

Assuming an initially empty heap, and given the current state of the heap represented
below, which of the malloc sequence was executed?

Address 0xa000 0xa008 …

Value -64 0x0000 …

p0 = malloc(64);
free(p0);

p0 = malloc(64);
p1 = malloc(32);
free(p0);
free(p1);

p0 = malloc(64); p0 = malloc(32);
p1 = malloc(32);
free(p0);
free(p1);

64 Allocated

16B 64B

32 Allocated

16B 32B

59

Assuming an initially empty heap, and given the current state of the heap represented
below, which of the malloc sequence was executed?

Address 0xa000 0xa008 …

Value -64 0x0000 …

p0 = malloc(64);
free(p0);

p0 = malloc(64);
p1 = malloc(32);
free(p0);
free(p1);

p0 = malloc(64); p0 = malloc(32);
p1 = malloc(32);
free(p0);
free(p1);

-64 Free

16B 64B

-32 Free

16B 32B

1. All freed blocks are immediately coalesced if possible.

60

Assuming an initially empty heap, and given the current state of the heap represented
below, which of the malloc sequence was executed?

Address 0xa000 0xa008 …

Value -64 0x0000 …

p0 = malloc(64);
free(p0);

p0 = malloc(64);
p1 = malloc(32);
free(p0);
free(p1);

p0 = malloc(64); p0 = malloc(32);
p1 = malloc(32);
free(p0);
free(p1);

-64 Free

16B 64B

-32 Free

16B 32B

1. All freed blocks are immediately coalesced if possible.

61

Assuming an initially empty heap, and given the current state of the heap represented
below, which of the malloc sequence was executed?

Address 0xa000 0xa008 …

Value -64 0x0000 …

p0 = malloc(64);
free(p0);

p0 = malloc(64);
p1 = malloc(32);
free(p0);
free(p1);

p0 = malloc(64); p0 = malloc(32);
p1 = malloc(32);
free(p0);
free(p1);

-64 Free

16B 64B 16B 32B

1. All freed blocks are immediately coalesced if possible.

-112

112B

62

Assuming an initially empty heap, and given the current state of the heap represented
below, which of the malloc sequence was executed?

Address 0xa000 0xa008 …

Value -64 0x0000 …

p0 = malloc(64);
free(p0);

p0 = malloc(64);
p1 = malloc(32);
free(p0);
free(p1);

p0 = malloc(64); p0 = malloc(32);
p1 = malloc(32);
free(p0);
free(p1);

-32 Allocated

16B 32B

-32 Allocated

16B 32B

1. All freed blocks are immediately coalesced if possible.

63

Assuming an initially empty heap, and given the current state of the heap represented
below, which of the malloc sequence was executed?

Address 0xa000 0xa008 …

Value -64 0x0000 …

p0 = malloc(64);
free(p0);

p0 = malloc(64);
p1 = malloc(32);
free(p0);
free(p1);

p0 = malloc(64); p0 = malloc(32);
p1 = malloc(32);
free(p0);
free(p1);

-32 Free

16B 32B

-32 Free

16B 32B

1. All freed blocks are immediately coalesced if possible.

64

Assuming an initially empty heap, and given the current state of the heap represented
below, which of the malloc sequence was executed?

Address 0xa000 0xa008 …

Value -64 0x0000 …

p0 = malloc(64);
free(p0);

p0 = malloc(64);
p1 = malloc(32);
free(p0);
free(p1);

p0 = malloc(64); p0 = malloc(32);
p1 = malloc(32);
free(p0);
free(p1);

-32 Free

16B 32B

-32 Free

16B 32B

1. All freed blocks are immediately coalesced if possible.

When coalescing, the “header” of the second block is merged into the payload region

65

Assuming an initially empty heap, and given the current state of the heap represented
below, which of the malloc sequence was executed?

Address 0xa000 0xa008 …

Value -64 0x0000 …

p0 = malloc(64);
free(p0);

p0 = malloc(64);
p1 = malloc(32);
free(p0);
free(p1);

p0 = malloc(64); p0 = malloc(32);
p1 = malloc(32);
free(p0);
free(p1);

-32 Free

16B 32B 16B 32B

1. All freed blocks are immediately coalesced if possible.

-80

80B

66

Assuming an initially empty heap, and given the current state of the heap represented
below, which of the malloc sequence was executed?

Address 0xa000 0xa008 …

Value -64 0x0000 …

1. The only block in the heap is a free block of size 64B
→ For there to be a free block, a block must first have been allocated, then freed
→ Look for malloc() and free() sequence (in that order!)

p0 = malloc(64);
free(p0);

p0 = malloc(64);
p1 = malloc(32);
free(p0);
free(p1);

p0 = malloc(64); p0 = malloc(32);
p1 = malloc(32);
free(p0);
free(p1);

-64 Free

16B 64B

67

Assuming the heap starts as drawn in the previous question, and given the final state of
the heap represented below, which of the malloc sequence was executed?

Address 0xa000 0xa008 …

Value -64 0x0000 …

Address 0xa000 0xa008 … 0xa020 …

Value 16 0x0000 … -32 …

-64 Allocated

16B 64B

Allocated block of size 16 ⇒malloc(16) called

16 Alloc
ated

16B 16B

-32 Free

16B 32B

64B = 16B + 16B + 32B

When splitting blocks, must use some space of payload to create new header

68

Assuming the heap starts as drawn above (14 b.), if the following malloc executes, what is
the value stored in p1?

Address 0xa000 0xa008 … 0xa020 …

Value 16 0x0000 … -32 …

p1 = malloc(32)

16 Allocated

16B 16B

-32 Free

16B 32B

Allocate this block since it fits
the size

0xa000 0xa020

We should return this point to the user, not the start of the block.
If we return the start of the block (0xa020), the user might

overwrite the header
(breaking our pointers to the next block)

To calculate the memory address of this point:
0xa020 + sizeof(Header) = 0xa020 + 16B = 0xa030

69

Assuming the heap starts as drawn above (14 b.), which value can fill the blank to
successfully free the first block?

Address 0xa000 0xa008 … 0xa020 …

Value 16 0x0000 … -32 …

free(???)

16 Allocated

16B 16B

-32 Free

16B 32B0xa000 0xa020

To free this block using free(), the user needs to pass the pointer (memory address) of the payload
region (which is returned by malloc()).

→ Call free with 0xa000 + sizeof(Header)
= free(0xa010)

Why? The user does not know anything about blocks. They simply call free with the same pointer
returned by malloc()

