
Shinwoo Kim
Teaching Assistant

shinwookim@pitt.edu
https://sites.pitt.edu/~shk148/

Spring 2023, Term 2234

Friday 12 PM Recitation

Jan 20th, 2023

Slides adapted from 

Martha Dixon and Vinicius Petrucci

Department of Computer Science

School of Computing & Information

University of Pittsburgh

Recitation 8: Fork/Dynamic Loading/Signals

CS 0449: Introduction to Systems Software Griffin Hurt

Griffin Hurt
Undergraduate Teaching Fellow

griffhurt@pitt.edu
https://griffinhurt.com

Spring 2024, Term 2244
Friday 2 PM Recitation

Mar 22nd, 2024

Slides adapted from 
Shinwoo Kim, Martha Dixon, and Vinicius Petrucci

Department of Computer Science
School of Computing & Information

University of Pittsburgh

Ø Course News

Ø Function Pointers

Ø Quiz

Ø Signals

Ø Fork/Exec



2

Course News

Loading and Forking Lab is due Thursday, March 28th at 5:59 
PM
Bomb Project is due Monday, March 25th at 5:59PM



Function Pointers

● Don’t be scared!
● We’ve covered pointers before
○ Only this time, we’ll be able to point to the memory 

address of a function…
● We should be familiar with this idea from the assembly 

project… where we used a function’s address to change 
execution of a program

● So… much like variables… functions have addresses too!
○ That we can point to!



How Can We Declare Function Pointers?

return_type (*pointer_name)(list,of,argument,types);

● Let’s dissect this
○ First, we’ll start by declaring the functions return type

■ void, int, long, double char*, etc.
○ Next, the actual pointer variable to the function

■ *pointer_name is your choice of variable name, not the 
actual function name

○ Lastly, a list of argument types
■ So we know what kind of arguments we need to pass 

when dereferencing our function pointer
■ (int, int), (double, int), (int*, char*), etc.



How Can We Declare Function Pointers?

● How can we call the functions we point to?
● Well, in one of two ways
○ If we are explicitly declaring a function 

pointer to one of our written functions:

type (*ptr1)(int, int) = &fun1;

type (*ptr1)(int, int) = fun1;



Function Pointer Declarations - Option 1

type (*ptr1)(int, int) = &fun1;

● Here, we’re declaring our function pointer which will point 
to an address of a function
○ Address means we need to dereference
○ Very similar to an int pointer

■ To access it, we need to use the dereference 
operator (*)

● So, when actually calling the function, we can say:

(*ptr1)(num1, num2);



Function Pointer Declarations - Option 2

type (*ptr1)(int, int) = fun1;

● Here, we’re declaring our function pointer which will 
point to an address of a function

● However, since we’re not using the (&) operator, we 
don’t need to dereference first

● Thus, our function pointer call is:

ptr1(num1, num2);

● It looks identical to just calling fun1(num1, num2)



What’s the Difference?

● Well… we might say the difference is in the address… but 
that turns out to not be quite the truth

● Consider these two snippets

● The pointer and it’s value are the same…



Option 1 - Example



Option 2 - Example



Something Familiar

● When talking about pointers, something else 
comes to mind…

● Arrays are also pointers!
● Can we create an array of functions?
○ Absolutely we can
○ This can actually prove to be quite useful



Example - Declared Array of Function Pointers



Example - Declared Array of Function Pointers

[] for array 
declaration

Array of functions

Dereference 
operator when 

trying to call 
function



Array of Function Pointers

● What if I don’t know what functions I want in 
my array at compile time? 

● How can we add functions to the array?
● Let’s try to declare an array of function 

pointers on the stack without initializing it



Example - Declared Array of Function Pointers



Quiz time!
Quiz is named Week ?
Password is: ______



Part B - Fork, Exec, and 
Signal Handling



Part B - Signals

● Processes can communicate to each other with 
signals

● For example, something we should be familiar 
with by now is the interrupt signal, or Ctrl+C
○ The interrupt signal will communicate to 

your process that the program should be 
terminated



Part B - Signals

● In C, we can actually catch these signals, and 
add some behavior to them

● You might have seen this in Project 3, where 
the program didn’t end immediately after 
Ctrl+C was pressed, but instead printed out 
some information before exiting

● How can we catch these signals?



Part B - Signals

● In the <stdlib.h> library, there’s a function we can use 
called signal

● signal(int interrupt, void* function_ptr)
○ Once signal detects the interrupt specified as a 

parameter (SIGKILL, SIGINT, etc), it will then execute 
the function pointed to by function_ptr, then perform 
the interrupt

● Once we call signal, the process will always be on the 
lookout for that signal, and if it occurs, will run the function



Part B

● For this part of the lab, we’ll need to use our knowledge of fork(), exec(), 
and signals

● Our program needs to look for the interrupts SIGUSR1 and SIGUSR2
○ If SIGUSR1 is detected, fork a process have it run the command ls
○ If SIGUSR2 is detected, fork a process and have it run the command ls 

-l -a 
● Your program should also run in the exact specified order and print the 

specified information
● IMPORTANT - when running processes with multiple threads, testing it 

once is not enough
● Due to the unpredictability of the scheduler, running your program once 

time may be fine, but the next time text may print out of order
● BE THOROUGH



Part A - Dynamic Libraries 
and Function Pointers



Part A

● For this part of the lab, we need to use 
dlopen and dlsym from the <dlfcn.h> library

● We’ll also need to create our plugin.c file and 
compile it to a shared object file (plugin.so)
○ To create the .so:

gcc plugin.c -o plugin.so -shared



Part A

● Once we have a shared object file, we can load it into the 
main program using dlopen and call the functions using 
dlsym

● void* dlopen(char* plugin_path, int mode)
○ Plugin path will be the so plugin we’re trying to run
○ For example, if I want to load the plugin called 

my_plugin.so, I’d use the path ./my_plugin.so
○ It returns a handle to be used by dlsym and dlclose()

● Much like malloc, dlopen calls should be matched with a 
dlclose(handle) call



Part A

● void* dlsym(void* handle, const char* fname)
○ Takes in a handle (returned by dlopen) and a 

function name to be called
○ Returns a function pointer to that function

● For example, if I have a handle returned from dlopen 
and I want a function pointer to 
int fun1(int, long):

int (*fun_ptr)(int, long) = dlsym(handle, “fun1”);



Part A

● From there, we can call the function same as 
any other function pointer
○ fun_ptr(my_int, my_long)
○ This will call the functions in the shared 

library



Part A - Assignment

● You will need to write a plugin manager that takes a 
plugin name as a command line argument

● The plugin should have 3 functions: 
○ int initialize()
○ int run()
○ int cleanup()

● Your plugin manager should be able to load and run 
all three of these functions
○ While also checking for errors



Fork()ing and Exec()uting



An Important Topic - Fork Tracing

● When discussing fork tracing, we need to 
determine which possible orders the 
processes can run in

● Since we can use instructions like wait(), we 
can limit these number of possible orders

● However, we still need to trace which outputs 
are possible with a given program



Fork Tracing Example



Can Certain Print Orders Happen?

● Can we have an order of 2, 3, 4, 
5, 1?



Can Certain Print Orders Happen?

● Can we have an order of 2, 3, 4, 
5, 1?
○ NO! But why?
○ At the beginning, there’s only 

one parent thread, so 1 must 
ALWAYS be printed first



Can Certain Print Orders Happen?

● Can we have an order of 2, 3, 4, 5, 1?
○ NO! But why?
○ At the beginning, there’s only one 

parent thread, so 1 must ALWAYS be 
printed first

● What about the order 1, 2, 3, 4, 5 
happen?



Can Certain Print Orders Happen?

● Can we have an order of 2, 3, 4, 5, 1?
○ NO! But why?
○ At the beginning, there’s only one 

parent thread, so 1 must ALWAYS be 
printed first

● What about the order 1, 2, 3, 4, 5 happen?
○ NO! Because the first parent thread 

waits for the child to finish, so 2 can 
only be printed after the child finishes 
executing (after 3 and 4… but NOT 5)



Building a Fork Tree
P1

Print 1



Building a Fork Tree
P1

Print 1

P1 P2



Building a Fork Tree
P1

Print 1

P1 P2

Wait Print 3



Building a Fork Tree
P1

Print 1

P1 P2

Wait Print 3

P2 P3



Building a Fork Tree
P1

Print 1

P1 P2

Wait Print 3

P2 P3

Print 4
Exit

Print 5
Exit



Building a Fork Tree
P1

Print 1

P1 P2

Wait

Print 2

Print 3

P2 P3

Print 4
Exit

Print 5
Exit



Building a Fork Tree
P1

Print 1

P1 P2

Wait

Print 2
Exit

Print 3

P2 P3

Print 4
Exit

Print 5
Exit



man strtok abridged

The strtok() function can help tokenize strings
#include <string.h>
char *strtok(char *str, const char *delim);
○ Breaks string str into a series of tokens using the delimiter delim.
○ Returns a pointer to the next token, or NULL if there are no more 

tokens.
Called in one of two ways:
1. strtok(str, d) // starts processing a new string
2. strtok(NULL, d) // continue processing a string

52

University of Pittsburgh - CS 0449



A strtok() example

#include <stdio.h>

#include <string.h>

int main(){

char str[] = "I:love-programming";

char delim[] = "-:";

char *token;

token = strtok(str, delim);

printf("%s\n", token);

return 0;

}

53

University of Pittsburgh - CS 0449

What will be printed?

$ ./strtok_example

I



A strtok() example
#include <stdio.h>

#include <string.h>

int main(){

char str[] = "I:love-programming";

char delim[] = "-:";

char *token;

token = strtok(str, delim);

printf("%s\n", token);

token = strtok(str, delim);

printf("%s\n", token);

return 0;

}

54

University of Pittsburgh - CS 0449

What will be printed?

$ ./strtok_example

I
🤔 But the second token should be 
“love”

I



A strtok() example
#include <stdio.h>

#include <string.h>

int main(){

char str[] = "I:love-programming";

char delim[] = "-:";

char *token;

token = strtok(str, delim);

printf("%s\n", token);

token = strtok(NULL, delim);

printf("%s\n", token);

return 0;

}

55

University of Pittsburgh - CS 0449

What will be printed?

$ ./strtok_example

I
love

How can we print the remaining tokens?



Astrtok() example

56

University of Pittsburgh - CS 0449

S e e t h e r e d f o x \0 …char* s =

S e e \0 t h e r e d f o x \0 …char* s =

S e e \0 t h e \0 r e d f o x \0 …char* s =

S e e \0 t h e \0 r e d \0 f o x \0 …char* s =

S e e \0 t h e \0 r e d \0 f o x \0 …char* s =

char* t = strtok(s, " ");

t

t

t

t

char* t = strtok(NULL, " ");

char* t = strtok(NULL, " ");

char* t = strtok(NULL, " ");

char* t = strtok(NULL, " ");
t → NULL

strtok() changes the string that has been parsed!

char* s = “See the red fox”;


