
Shinwoo Kim
Teaching Assistant

shinwookim@pitt.edu
https://sites.pitt.edu/~shk148/

Spring 2023, Term 2234

Friday 12 PM Recitation

Jan 20th, 2023

Slides adapted from 

Martha Dixon and Vinicius Petrucci

Department of Computer Science

School of Computing & Information

University of Pittsburgh

Recitation 10: Virtual Memory

Ø Course News

Ø Paging/Page Tables

Ø Quiz

Ø Work Time

CS 0449: Introduction to Systems Software Griffin Hurt

Griffin Hurt
Undergraduate Teaching Fellow

griffhurt@pitt.edu
https://griffinhurt.com

Spring 2024, Term 2244
Friday 2 PM Recitation

Apr 5th, 2024

Slides adapted from 
Shinwoo Kim, Martha Dixon, and Vinicius Petrucci

Department of Computer Science
School of Computing & Information

University of Pittsburgh



2

Course News

Shell Project due Tuesday April 9th at 5:59PM



Paging and Page Tables



The Illusion

● Have you ever noticed something about the addresses of your 
pointers?
○ How heap pointers have their own similar prefixes to their 

address?
○ And how stack pointers do too?
○ Even if multiple processes are open at once?

● Well, if they were able to all access physical memory, this would 
lead to many collisions, each process overwriting each other’s 
memory
○ So, to counteract this, we created virtual memory
○ An illusion of continuous memory



The Reality

● In reality, physical memory is very similar to a heap, 
and malloc
○ Only, all block sizes are exactly the same - 1 page

● Each process can malloc more pages, and with some 
magic, the operating system will convert that page’s 
address in physical memory to a virtual address
○ This allows each process to believe that they own 

all of RAM
○ Which they very much do not



The Magic

● How does this magical process happen? How 
are these virtual addresses converted to real 
addresses?

● Well, we encode information into our virtual 
address, leaving a breadcrumb trail as to 
where the real page lies in memory

● This breadcrumb trail is called a page table



The Magic Page Table

● The first thing we need to do is figure out: What is a page?
○ A page is basically an array of bytes
○ The arrays are all of a fixed size, which is just the page size

● So, part of the address we’re trying to access should be an index into this 
large byte array
○ Or the page offset

● How do we determine how large of an offset we can have?
○ Well, we need to be able to index our byte array from 0 to page_size -

1
○ If we consider unsigned numbers, this looks a lot like the max value 

for an n bit signed number… where 2n = page_size
○ See slide 25 in 2’s complement for where this came from



The Magic Page Table

● If we say that 2n = page_size, how do we 
determine what the page size actually is?
○ Well, we can use logarithms
○ 2n = page_size → n = log2(page_size)
○ This tells us how many bits we need to 

represent the range of indices in the page, 
namely 0 to page_size - 1



The Magic Page Table

● So, the number of bits that we need for the offset is 
log2(page_size)
○ From there, we know where we want to go in the 

page
○ But… we still don’t know which page we’re trying to 

access in RAM (physical memory)
● How do we find out which page in RAM we’re trying to 

access?
● We index our page table!



The Magic Page Table

● The page table is an array of pages
○ More accurately, an array of page addresses

■ Which point to RAM (the physical address)
● Like any other array, we need to index the page 

table to access the physical address that the 
page resides at



The Magic Page Table

● We said earlier that we need some number of offset bits in the 
virtual address

● Those bits aside, the rest can be used to index the page table to 
find our page

● So, we’ll mask out the rest of the bits not in the offset, and use 
them to index the page table

● After we get the real page address in RAM by indexing the page 
table, we attach the offset to that address (since the index of our 
page that we’re trying to read won’t change)
○ Now, we have our physical address!

● Let’s look at an example



Paging Example

● We need to know some things about 
architecture
○ Assume 36 KiB page size
○ Assume 1 GiB RAM
○ Assume we’re using 32 bit architecture

■ Meaning our address size is 32 bits



Paging Example

● Number of offset bits:
○ log2(64 KiB) = log2(216) = 16

● Bits used to index the page table:
○ 32 (address size) - 16 (offset bits) = 16

● So, we know that we can have 16 bits to 
index the page table, or 216 different pages in 
the page table



Paging Example

A B C D E F 1 2

This is our 32 bit address (in hexadecimal)



Paging Example

A B C D E F 1 2

This is our 32 bit address (in hexadecimal)

We know that the lower 16 bits are used for 
the offset

Offset Bits



Paging Example

This is our 32 bit address (in hexadecimal)

We know that the lower 16 bits are used for 
the offset

That means the remaining 16 bits are used for 
the page table index

A B C D E F 1 2

Offset BitsPT Bits



Paging Example

Next, we’ll go to the page table, and look at 
index 0xABCD, since that’s the page table 
index for this virtual address.

Once we index the page table, it will return to 
us the real, physical address for this page 
that we’re looking for.

A B C D E F 1 2

Offset BitsPT Bits



Paging Example

A B C D E F 1 2

PT Bits

0x0000

0x0001

0x0002

…

0xABCC

0xABCD

0xABCE

…

Valid Read Write Exec Addr

0 0 1 0 0xA

0 1 0 1 0x1

0 0 1 1 0xF

… … … … …

… … … … …

1 1 0 0 0x7

1 1 1 0 0x3

1 1 1 0 0xC



Paging Example

0x0000

0x0001

0x0002

…

0xABCC

0xABCD

0xABCE

…

Valid Read Write Exec Addr

0 0 1 0 0xA

0 1 0 1 0x1

0 0 1 1 0xF

… … … … …

… … … … …

1 1 0 0 0x7

1 1 1 0 0x3

1 1 1 0 0xC

A B C D E F 1 2

PT Bits

Page is valid, so we can look for the 
corresponding physical address, which is 
0x3



Paging Example

After going to the page table, we found that 
the index in physical memory for this page 
was 0x3, so the real, physical address is now 
shown on the right.

A B C D E F 1 2 3 E F 1 2



Quiz time!
Password: ______

21


