
Shinwoo Kim
Teaching Assistant

shinwookim@pitt.edu
https://sites.pitt.edu/~shk148/

Spring 2023, Term 2234

Friday 12 PM Recitation

Jan 20th, 2023

Slides adapted from

Martha Dixon and Vinicius Petrucci

Department of Computer Science

School of Computing & Information

University of Pittsburgh

Recitation 11: Threads/Synchronization

Ø Course News

Ø Threads

Ø Synchronization

Ø Quiz!

Ø Conditional Variables

CS 0449: Introduction to Systems Software Griffin Hurt

Griffin Hurt
Undergraduate Teaching Fellow

griffhurt@pitt.edu
https://griffinhurt.com

Spring 2024, Term 2244
Friday 2 PM Recitation

Apr 12th, 2024

Slides adapted from
Shinwoo Kim, Martha Dixon, and Vinicius Petrucci

Department of Computer Science
School of Computing & Information

University of Pittsburgh

2

Course News

Threads Project due Friday, April 19th at 5:59PM
I’m going to refactor my website tonight so all slides will be
posted

– Sorry for the delay!

Threads
Achieving Concurrency without fork()s

3

Processes and Threads

4

Data Data FilesFiles

Register Stack Register

Stack

Register

Stack

Register

Stack
Code

Code

Single-threaded process Multi-threaded process

Thread

Threads can
share data!

Posix Threads (pthread) — POSIX.1c

POSIX: Portable Operating System Interface
○ Standard to unify the program and system calls that many different operating systems

provide
○ Provides us a ‘standard library’ to help create and manage threads
○ #include <pthread.h>
○ int pthread_create(pthread_t threadID,

FLAGS, void *(*function)(void *),
void *restrict arg);

○ int pthread_join(pthread_t thread, void **retval);

Other libraries exist
○ Win32 Threads for Windows
○ C11 Threads - not popular, not fully portable Thanks Microsoft

■ C++11 Threads - popular and widely used

5

pthread_create()

#include <stdio.h>
#include <pthread.h>
void *do_stuff(void *p) //function to be executed by the thread
{

printf("Hello from thread %d\n", *(int *)p);
}

int main()
{

pthread_t thread; //variable to store thread ID
int id, arg1, arg2; //variables for thread IDs and arguments
arg1 = 1; //set the argument for the 1st thread
//create the 1st thread
id = pthread_create(&thread, NULL, do_stuff, (void *)&arg1);
arg2 = 2; //set the argument for the 2ed thread
do_stuff((void *)&arg2); //call the function directly for the 2ed thread
return 0;

}

6

Output

Hello from thread 2

7

pthread_create()
#include <stdio.h>
#include <pthread.h>
void *do_stuff(void *p)
{

printf("Hello from thread %d\n", *(int *)p);
}

int main()
{

pthread_t thread;
int id, arg1, arg2;
arg1 = 1;
id = pthread_create(&thread, NULL, do_stuff, (void *)&arg1);
arg2 = 2;
do_stuff((void *)&arg2);
return 0;

} 8

When the process exits, all threads are canceled. Here, the
process exited before the second thread got to print its
message

pthread_yield()

#include <stdio.h>
#include <pthread.h>
void *do_stuff(void *p)
{

printf("Hello from thread %d\n", *(int *)p);
}

int main()
{

pthread_t thread;
int id, arg1, arg2;
arg1 = 1;
id = pthread_create(&thread, NULL, do_stuff, (void *)&arg1);
pthread_yield();
arg2 = 2;
do_stuff((void *)&arg2);
return 0;

}

9

Output

Hello from thread 1

Hello from thread 2

pthread_yield() relinquishes the CPU
○ Allowing another thread to assume the CPU
○ Technically deprecated, but still portable and widely used!

⇒ You shouldn’t use it in your own code, but you may encounter it in the wild!

10

pthread_join()

#include <stdio.h>
#include <pthread.h>
void *do_stuff(void *p)
{

printf("Hello from thread %d\n", *(int *)p);
}

int main()
{

pthread_t thread;
int id, arg1, arg2;
arg1 = 1;
id = pthread_create(&thread, NULL, do_stuff, (void *)&arg1);
pthread_join(thread, NULL);
arg2 = 2;
do_stuff((void *)&arg2);
return 0;

}

11

Output

Hello from thread 1

Hello from thread 2

pthread_join(thread, NULL) waits until thread terminates

12

Linking the pthread library

At compile time, need to link the POSIX thread library to your code
Using -pthread option to gcc
gcc -o thread_program source.c -pthread
○ Writing a Makefile might be useful here…

13

Synchronization
The Dangers of Threading

14

Race Condition: A Refrigerator Analogy

15

Alice and Bob are roommates living in a dorm
○ They share one refrigerator in the kitchen

Alice wakes up at 9:30 AM
○ She checks the refrigerator for milk and sees that

there is none
○ She goes out to the store to get milk

While Alice is at the store, Bob wakes up
○ He checks the refrigerator for milk and sees that

there is none
○ He goes out to the store to get milk

At 1 PM, Alice returns from the store
○ And places the milk in the fridge

At 1:30 PM, Bob returns from the store
○ And tries to place the milk in the fridge
○ But there’s already another milk in the fridge!

Synchronization

What went wrong?
Bob and Alice did not communicate!

Some shared resource (refrigerator)
Time delay between checking the condition (looking inside the refrigerator)
And taking an action (placing milk inside refrigerator)

16

4 20956

Race Conditions Animated

17

1 8 5 6 ?tail = A[] =

A[tail] = 20;

tail++;

enqueue()

A[tail] = 9;

tail++;

Thread A Thread B

thread
switch

Synchronization

What went wrong?
The threads did not communicate!
○ Same problem may occur with processes!

Some shared resource (array)
Time delay between checking some condition (loading the tail)
And the action (updating the tail)
○ Preempted during this delay!

Scheduling can be random and preemption can happen at any time
Need some way to synchronize the threads
○ Need help from the operating system

18

Mutex

MUTual EXclusion
A mutex is a lock that only one thread can acquire
All other threads attempting to access the resource protected by a locked
mutex will be blocked
#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t, NULL)
○ Creates a new unlocked mutex

int pthread_mutex_lock(pthread_mutex_t*)
○ Waits until it can lock the mutex

int pthread_mutex_unlock(pthread_mutex_t*)
○ Unlocks the mutex

19

456 20 9

Fixing Race Conditions Animated

20

1 8 5 6tail = A[] =

lock(&mutex);
A[tail] = 20;
tail++;
unlock(&mutex);

enqueue()

lock(&mutex);
A[tail] = 9;
tail++;
unlock(&mutex);

Thread A Thread B

thread
switch

mutex =

45 20

Deadlocked

21

1 8 5 6tail =

lock(&mutex);
A[tail] = 20;
tail++;
unlock(&mutex);

A[] =

enqueue()

lock(&mutex);
A[tail] = 9;
tail++;
unlock(&mutex);

Thread A Thread B

thread
switch

mutex =

Never Runs!

Be careful with synchronization primitives

“A set of processes are deadlocked if each process in the set is waiting for
an event only another process in the set can cause”

22

Semaphores
A special counter used for synchronization
○ Essentially counties the number of free resources

Down (wait) reduces the counter
○ Denoting that a resource is being used
○ Waits if the counter is 0

Up (signal) operation increases the counter
○ Denoting that a resource is now free

#include <semaphore.h>
int sem_init(sem_t*, 0, unsigned int initial_value);
○ Creates a semaphore with the given initial value. (The second argument means it the semaphore

data is in shared memory. If non-zero, it can’t be seen by other threads.)
int sem_wait(sem_t*);
○ Decrements counter unless it is 0 in which case it waits.

int sem_post(sem_t*);
○ Increments counter.

23

Quiz time!
Password is ________

24

Condition Variables
A condition under which a thread executes or is blocked

25

Condition Variables

Condition Variables are used to wait for a particular condition to become
true
wait(condition, lock): release lock, put thread to sleep until condition
is signaled; when thread wakes up again, re-acquire lock before returning.
signal(condition, lock): if any threads are waiting on condition, wake
up one of them. Caller must hold lock, which must be the same as the lock
used in the wait call.
broadcast(condition, lock): same as signal, except wake up all
waiting threads.

26

Condition Variables

Essentially a queue of waiting threads
Thread B waits for a signal on CV before running
○ wait(CV, …);

Thread A sends signal() on CV when time for B to run
○ signal(CV, …);

27

Condition Variables at the DMV

Consider PennDOT (DMV)
○ Which serves two functions:

1. Title work
2. License renewal

Critical resource: representative; threads: people
in line
When a title-works window representative comes to
the window after a break, a condition
‘title_window_ready’ is satisfied.
The title representative could look for the next ticket
(for title work) and signal the customer to come to the
window.
Here we have two condition variables,
title_window_ready & license_window_ready.
These conditions satisfy if one customer is handled
and now the representative is ready to handle next
customer.

28

The Bridge Problem

Consider a narrow bridge that can only allow three vehicles in the same
direction to cross at the same time.
If there are three vehicles on the bridge, any incoming vehicle must wait as
shown below.

29

The Bridge Problem

When new cars get to the bridge, have them wait

30if(new car from left) wait(left, bridgelock)

The Bridge Problem

When a vehicle exits the bridge, we have two cases to consider.
Case 1: there are other vehicles on the bridge
○ Shown below
○ In this case, one vehicle in the same direction should be allowed to proceed

Case 2: the exiting vehicle is the last one on bridge.

31
if(bridge.numCars != 0) signal(left, bridgelock)

The Bridge Problem

Case 2 is more complicated and has two subcases.
In this case, the exiting vehicle is the last vehicle on the bridge.
If there are vehicles waiting in the opposite direction, one of them should be
allowed to proceed. This is illustrated below:

32

if(bridge.numCars == 0 && rightCars != 0)
signal(right, bridgelock)

The Bridge Problem

Or, if there is no vehicle waiting in the opposite direction, then let the waiting
vehicle in the same direction to proceed.

33

if(bridge.numCars == 0 && rightCars == 0)
signal(left, bridgelock)

Problem with the Bridge Problem

Consider Case 1: there are other vehicles on the bridge
○ Shown below
○ In this case, one vehicle in the same direction should be allowed to proceed

But what if there are infinite number of vehicles on the left?
○ Will the vehicles on the right ever get to go?

34
if(bridge.numCars != 0) signal(left, bridgelock)

Starvation

Starvation describes a situation where a thread is unable to gain regular
access to shared resources and is unable to make progress.
This happens when shared resources are made unavailable for long periods
by "greedy" threads.

35

Live Lock

A Livelock is when two tasks are actively signaling the other to go and
making no progress.
Example: Two friends at a dinner table with only one spoon
○ A tells B to use the spoon and eat first
○ B tells A to use the spoon and eat first
○ A tells B to use the spoon and eat first
○ …
○ No one gets to eat

Aside: This is a weird example…
○ Why are you at a dinner table with only one spoon?
○ Why doesn’t one of them go and get another spoon?

Many ‘classical IPC problems’ are built around weird premises 1550

○ Dining Philosopher Problems
○ Sleeping Barber Problem

36

